
Task Activity Example
Delivery of diagnostics

Tue, Jul 28, 1998
Introduction

This note illustrates a measurement of task timing in an IRM as it executes a page
application program whose function is to deliver task timing data. The page application is
PAGETASK, and it is given a "keyboard interrupt," or click, to request a dump of all saved task
activity up to that point. In order to capture the activity of the system that results from such a
click, the request was issued two times in rapid succession, as the task diagnostics 4K-byte
circular buffer typically holds only about ten 15 Hz cycles of diagnostic data. The diagnostics
captured on the second click included the task activities relating to production of the desired
task diagnostics data in response to the first click.

Scenario of test
In this example, the page was set up to list the results to the serial port of another

node, which means that a series of setting messages, each of which includes one line of the
256 lines of text output, had to be built and sent to that node. Each line of text was 32 bytes. A
Classic protocol setting message for this case adds up to a total message size of 46 bytes. With
256 such lines being delivered, the total to be transmitted to the network is 11776 bytes. This
is more than the 9000-byte limit of UDP datagram support, so that fragmented datagrams
must be sent to contain all this listing output. The following diagnostics will illustrate what
happens.

When a page application is in danger of spending too much CPU time, it should respect the
real-time nature of the front-end support and break up its activities by making calls to
NextTask, which will allow any other pending tasks to execute. This example illustrates how
this affects the job of building such a large listing output.

Task Timing Diagnostic Data
Each line of the following task timing data shows task name, followed by any pending

events for that task, followed by the execution time of the task in ms, followed by the time of
the start of task execution, shown in hrmn:sc and ms delay within the indicated 15 Hz cycle
(range 00–14). The three cycles of task activities shown are separated by a blank line for
clarity.

QMon 0000 .08 0911:45-02+ 0 Usual cycle start network cleanup
Updt 0000 2.25 0911:45-02+ 0 Usual data pool updating
QMon 0001 .3 0911:45-02+ 2
DTim 0000 .07 0911:45-02+ 2 Date/time update
Alrm 0000 1.12 0911:45-02+ 2 Usual alarm scan
Appl 0000 7.86 0911:45-02+ 4 Slice 1 in response to click
Alrm 0000 .05 0911:45-02+11
SDmp 0000 .06 0911:45-02+11
Serl 0000 .43 0911:45-02+12
Appl 0000 17.21 0911:45-02+12 Slices 2-4
Serl 0000 .14 0911:45-02+29
Appl 0000 11.77 0911:45-02+29 Slices 5-6
Cons 0000 .08 0911:45-02+41
Serv 0000 .09 0911:45-02+41
Appl 0000 5.87 0911:45-02+41 Slice 7

Serl 0000 .59 0911:45-02+47
Appl 0000 5.68 0911:45-02+48 Slice 8
Serl 0000 .33 0911:45-02+53
Appl 0000 16.73 0911:45-02+54 Slice 9-11

QMon 0000 .06 0911:45-03+ 4
Updt 0000 8.04 0911:45-03+ 4 Build first datagram (176 msgs)
Appl 0000 6.75 0911:45-03+12 Slice 12
QMon 0001 15.67 0911:45-03+19 Network cleanup after 1st datagram
Serl 0000 .45 0911:45-03+34
Appl 0000 6.05 0911:45-03+35 Slice 13
SNAP 0000 .2 0911:45-03+41
DTim 0000 .09 0911:45-03+41
Cons 0000 .07 0911:45-03+41
Serv 0000 .09 0911:45-03+41
Appl 0000 5.77 0911:45-03+41 Slice 14
Clas 0000 .19 0911:45-03+47
Alrm 0000 1.1 0911:45-03+47
Appl 0008 5.72 0911:45-03+48 Slice 15
Alrm 0000 .05 0911:45-03+54
Serl 0000 .13 0911:45-03+54
Appl 0008 5.52 0911:45-03+54 Slice 16 (last one)
Updt 0000 2.41 0911:45-03+60 Build second datagram (80 msgs)
QMon 0000 .07 0911:45-03+62
IDLE 0000 4.38 0911:45-03+62 Idle time at end of cycle

QMon 0000 3.89 0911:45-04+ 0 Extra network cleanup last datagram
Updt 0000 3.07 0911:45-04+ 4 Usual data pool update
Serl 0000 .4 0911:45-04+ 7 Serial port input processing
QMon 0001 .33 0911:45-04+ 7 (Everything back to normal)
DTim 0000 .1 0911:45-04+ 7
Alrm 0000 1.15 0911:45-04+ 8
Appl 0000 .14 0911:45-04+ 9
Alrm 0000 .04 0911:45-04+ 9
SDmp 0000 .06 0911:45-04+ 9
Updt 0000 .11 0911:45-04+ 9
QMon 0000 .06 0911:45-04+ 9
IDLE 0000 .11 0911:45-04+ 9
Serl 0000 .13 0911:45-04+ 9
IDLE 0000 30.43 0911:45-04+ 9
Cons 0000 .09 0911:45-04+40
Serv 0000 .09 0911:45-04+40
IDLE 0000 26.55 0911:45-04+40

Background of IRM task execution
The IRM operates in real-time, which means that it respects 15 Hz task activity. All

tasks run at the same priority, because all jobs are normally expected to complete their work
each cycle. In addition, time-slicing is not used, so that task switch can only occur at times
that the currently running task voluntarily gives up the CPU. Any task that needs an
extended time for execution should invoke NextTask from time to time in order to permit

Task Activity Example p. 2

other tasks to run. A principal task for performing this logic is the Appl task, which invokes
the current active page application. (Only one page application can be active at once; it is
invoked by the system at 15 Hz after the data pool is filled, active requests are fulfilled, and
the alarm scan has completed.) Via operator interaction, a page application is sometimes
asked to perform an operation that may take a long time to complete—even more than a
cycle. The active page application is viewed as a diagnostic, so that its absolute rigid
adherence to 15 Hz execution is not demanded, but it should not prevent other tasks, such as
Updt and Alrm, from maintaining real-time operation.

Analysis
The particular page application under study is written to break up its output of

encoded diagnostics data by invoking NextTask every 16 lines of text. In this example, a
total of 256 lines of output text are generated, so that means it invokes NextTask 16 times
during the course of its encoding and queuing to the network the setting messages that carry
the text to be sent via the network to the target listing node for local printing via its serial
port. This activity is performed by the Appl task. According to the diagnostic record, each
"slice" of Appl activity, encoding and queuing 16 lines of output, requires about 6 ms. When
Appl calls NextTask, but it turns out that no other tasks are in the ready queue awaiting
execution, NextTask immediately returns without switching to another task. This is why
some slices require a significantly longer time than 6 ms. But the "quantum" of slice execution
time is about 6 ms. We can deduce that encoding one line of text and queuing it to the
network requires about 350 microseconds.

The Updt task refreshes the data pool early each cycle and fulfills any active data requests,
but it is also used to flush any queued messages to the network. In this example, after 11
slices of Appl execution, a new cycle began, and the Updt task flushed all queued message to
the network. This meant it built the entire first datagram of 176*46 = 8096 bytes and
partitioned it into 6 fragments for queuing to the network hardware. Doing all this required 8
ms, which is 5 ms longer than the usual 3 ms time to update the data pool in that node. From
the diagnostics, it appears that an extra execution of Updt required 2.4 ms to build the 80*46
= 3680 bytes and partition it into three fragments for queuing to the network hardware.

The QMon task does cleanup work after completion of network transmissions. In this case of
setting messages, each allocated message block is freed upon completion of transmission to
the network, and event marked by the network transmit interrupt. In this example, 15 ms of
time was used by QMon when it sought to free up 176 message blocks. Later, after the second
datagram transmission completed, it needed about 4 ms to free 80 message blocks.

Note that Appl task execution continued for longer than one cycle; in fact, it almost
consumed all of the available time (that would otherwise be idle time) during two cycles. The
first cycle of Appl activity used all available time, and only 4 ms of idle time remained in the
second cycle. Also note that the start of task execution for the second cycle was delayed for 4
ms. This occurred because the cycle interrupt occurred while Appl was active running Slice
11, which required 6 ms. Switching to QMon was held up until Appl next invoked NextTask.

The Alrm task execution requires 1.1 ms in this node. It should run every cycle. For this
example, Alrm ran much later than usual during the second cycle, but it did run, so that any

Task Activity Example p. 3

device data residing in the data pool was checked for alarms.

One the third cycle, everything was back to normal, except for the QMon time to cleanup and
free the 80 message blocks that comprised the second datagram. About 60 ms of idle time is
available in a normal 66 ms cycle for this node.

Conclusion
This example shows how task execution can be broken up by a long-running page

application by invoking NextTask so that the IRM's real-time character is not compromised.
After studying these results, it might be advisable to reduce the time "quantum" used by this
application. Perhaps NextTask should be called after processing only 8 lines of text, say.
This would limit the delay of the second cycle's execution by no more than 3 ms, rather than
up to 6 ms as demonstrated herein.

Task Activity Example p. 4

